轨道交通隧.道消防应急照明的研究与产品选型
刘细凤
安科瑞电气股份有限公司 上海嘉定 201801
【摘 要】针对城市轨道交通中不同线路之间存在区间消防应急照明和疏散指示系统设计差异的问题,文章对集中电源设置方案、集中电源型和自带电源型供电方式,以及消防应急照明兼做一般工作照明三大问题展开了分析。首先,介绍了区间消防应急照明的照度要求、灯具和照明回路的设置,以及线缆截面的选取方法;然后,从方案优缺点和经济性两方面,对三大问题进行了分析。文章给出一定的总结性意见,供新建线路在方案设计阶段参考。
【关键词】城市轨道交通;隧.道消防应急照明;疏散指示系统;集中电源;自带电源型;供电方式;一般工作照明
0.引言
自《消防应急照明和疏散指示系统技术标准》(GB51309-2018) 实施以来,城市轨道交通领域各建设单位和设计单位关于区间隧.道如何执行该标准已经基本达成一致,即采用集中控制型消防应急照明和疏散指示系统(以下简称集中控制型系统)。但针对集中电源设置位置、蓄电池的供电方式是采用集中电源还是灯具自带蓄电池,疏散照明是否兼做一般工作照明等问题,在设计过程中部分线路存在理解不一致的问题,导致设计方案不统一,因此有必要对各种设计方案进行分析。
1.相关参数的设置
根据《消防应急照明和疏散指示系统技术标准》(GB 51309-2018)要求,目前城市轨道交通区间消防应急照明和疏散指示系统均采用集中型控制系统,灯具选用A型灯具。常规的线路区间隧.
1.1 照度值
《城市轨道交通照明》(GB/T 16275-2008)对城市轨道交通各场所正常照明的照度标准值进行了相应规定,其中,区间隧.道照度标准值为5 lx,参考平面为轨平面;区间线路疏散照明照度不小于3.0 lx。另外,《地铁设计防火标准》(GB 51298-2018)规定,地下区间道床面疏散照明的低水平照度不应小于3.0 lx。根据上述要求可知,区间一般照明的照度要求为不小于5 lx,疏散照明不小于3 lx。
根据某轨道交通线路工程实际(盾构隧.道内径为5.4 m),选用功率为10W、光效≥ 100 lm/W 的LED消防应急照明灯具(以下简称照明灯),灯具布置间距为10m,灯具安装高度为2975mm(中.心线距轨面),距疏散平台面2125mm。经过仿真模拟计算,可以满足道床面平均照度5 lx 和疏散低照度3 lx的要求。
1.2 灯具数量
《消防应急照明和疏散指示系统技术标准》(GB51309-2018)规定,任一配电回路配接灯具的数量不宜超过60只,额定功率总和不应大于配电回路额定功率的百分之80,A型灯具配电回路的额定电流不应大于6A。按10W的照明功率计算,可以得到区间每个配电回路能够供电的照明灯数量为17.28盏,考虑线路损耗,每个配电回路供电的照明灯数量选取为15盏。相邻两个照明灯采用不同的配电回路交叉供电,每个配电回路所带的照明灯均匀分布在300m范围内;300m范围内的标志灯采用单回路供电,每个配电回路供电的标志灯数量为30盏。
1.3 线缆截面
根据国标图集《19DX101-1建筑电气常用数据》,消防应急灯具端子处电压偏差允许值可为额定电压的±百分之20。19D702-7中直流线路电压损失计算方法中的简化计算公式为
式中:百分之u 为电压降百分数;Δu 为电压降;P 为线路功率,W;L 为线路长度,m;U 为标称电压,V;S为线路截面,mm2;ρθ 为工作温度为θ 时的导线电阻率,Ω·mm2/m。
选取70 ℃为线路工作温度,即ρ70=0.020 64 Ω·mm2/m,照明灯功率为10W,标志灯功率为1W,则单回路照明灯总功率P 为150W,标志灯总功率P为30W,计算得到各电缆截面满足电压降±百分之20 的供电距离,如表1所示
2. 集中电源的设置
2.1集中电源的设置方案
《消防应急照明和疏散指示系统技术标准》(GB51309—2018)规定集中电源应设置在消防控制室、低压配电室、配电间内或电气竖井内,但区间隧.道内无上述电气用房,因此需考虑集中电源放置位置,目前主要有两种方案。
(1)方案一。将用于区间照明的集中电源全部设置在邻近车站站台层照明配电室,邻近两个车站的集中电源各负责为半个区间的灯具直接配电,如图1所示。这种方案主要考虑蓄电池运行环境,设置于照明配电室利于通风和自动灭火。在**标准编制组的相关答疑中,建议集中电源设置在车站范围内,因此部分线路采用的方案为将集中电源设置在车站配电室,直接向区间的应急灯具供电。但这种方案运用在长、大区间时,集中电源的供电半径较大、线缆截面较大、回路较多;且部分车站设置了配线,配线区不一定设置照明配电室,照明配电室距区间起终点的距离可能达100~200m,进一步变大了区间灯具供电线路的截面。
图1 集中电源的设置方案一
(2)方案二。在区间联络通道处放置集中电源,如图2所示。区间联络通道的距离一般不超过600m,车站集中电源和联络通道处的集中电源供电半径不会超过300m。方案二的灯具线缆截面和总长度比方案一小。另外,区间隧.道所用的集中电源容量一般为1kVA左右,相比EPS 及其他专.业使用的蓄电池容量已经较小,不一定要设置在照明配电室;且规范并无明确要求不可设置在区间隧.道,只是要求设置于隧.道场所和潮湿场所时应选择防护等级不低于IP65的产品。尽管蓄电池容量较小,但蓄电池设置在区间疏散通道内仍存在安.全隐患,且不方便巡视维护。
图2 集中电源的设置方案二
2.2 经济性对比
如果按10m间隔布置照明灯和标志灯,无论采用方案一还是方案二,均可实现每300m的照明灯采用两回路交叉供电、每300m的标志灯采用一回路供电。但对于方案一,区间长度可能达3~4km,即使区间设置了中间风井,中间风井间、中间风井与车站的距离依然可能达2~2.4km;集中电源的供电半径依然可能达1.2km,需重.点考虑电压降问题。
2.2.1 线缆截面选取
方案一每个回路可以接15盏照明灯、两回路交叉供电,每个回路可供电的照明灯范围为300m内。根据表1的计算结果,当采用方案一且不考虑车站配线的影响时,以每300m范围为一供电单元、隧.道洞口为参照点,则单个区间的照明灯和标志灯的配电线缆选取应满足以下要求:
(1)0~300m范围内,照明灯配电线缆截面应不小于10 mm2、标志灯配电线缆截面应不小于2.5mm2;
(2)300~600m范围内,照明灯配电线缆截面应不小于16mm2、标志灯配电线缆截面应不小于4mm2;
(3)600~900m范围内,照明灯配电线缆截面应不小于25mm2、标志灯配电线缆截面应不小于6mm2;
(4)900~1200m范围内,照明灯配电线缆截面应不小于35mm2、标志灯配电线缆截面应不小于6mm2。
当采用方案二时,由于集中电源的供电半径≤300m,照明灯配电线缆截面可选择10mm2、标志灯配电线缆截面可选择2. mm2。
2.2.2 费用估算
由于方案一和方案二线缆选型原则不一样,将导致两个方案经济性的差异。选取线路中4个长度大于60m的区间进行分析,区间1长约791m,中间设置1联络通道;区间2长约1105 m,中间设置1联络通道;区间3长约1732m,中间设置2联络通道;区间4长约2018m,中间设置3联络通道。
4个区间消防应急照明和疏散指示系统费用估算如表2所示,费用包括集中电源、灯具、线缆配管等设备材料及安装费用,其中设置在车站的集中电源不考虑进线电缆的费用,设置在区间的集中电源考虑进线电缆的费用。需要说明的是,方案二中区间联络通道集中电源AC220V进线电源采用车站双电源切换箱直接馈出单回路至区间集中电源,未采用在联络通道设置双电源切换箱的方式,这一方案区别对方案二造价影响不大,因此文章不再展开探讨。
由表2可知,当区间隧.道长度越长,两个方案之间的费用差价越大,方案二的经济优势明显。假设集中电源设置在区间联络通道时的寿命比设置在车站照明配电室内减短一半,则在方案一集中电源寿命周期内,方案二集中电源需要重新更换一遍,考虑这一部分设备更换费用,方案二的经济优势依然明显。
3. 蓄电池电源的供电方式
3.1供电方式
《消防应急照明和疏散指示系统技术标准》(GB51309-2018)第3.3.1条规定,灯具的电源应由主电源和蓄电池电源组成,且蓄电池电源的供电方式分为集中电源供电方式和灯具自带蓄电池供电方式。根据灯具蓄电池电源供电方式的不同,集中控制型系统分为集中电源型和自带电源型,如图3所示。
(1)集中电源供电方式。集中电源供电方式下,集中电源全部设置在车站,存在经济性较差的问题;集中电源设置在区间联络通道,将存在安.全隐患。为了解决上述问题,部分线路采用灯具采用自带蓄电池供电方式的集中控制系统,将应急照明配电箱设置在区间联络通道。由于应急照明配电箱内模块主要为整流模块和通信模块,无蓄电池,相比集中电源,对环境条件的要求不高、安.全隐患小。
(2)灯具自带蓄电池供电方式。灯具自带蓄电池供电方式类似于将蓄电池分散于各个灯具,当主电源断开后灯具自动转入自带蓄电池供电,因此当配电回路出现损毁故障时,可靠性比集中电源高。但灯具自带蓄电池时,灯具内部结构变得更复杂,因此故障率比集中电源型灯具更高;蓄电池不再集中设置而是分散于各个灯具,灯具安装在隧.道壁,隧.道壁温度较高,对蓄电池寿命影响较大,后期灯具维护工作量将增加。
该系统配合火灾报.警.控.制.器使用时,在平时对系统内的设备进行实时的监视和控制,便于日常的管理和维护,保障系统的稳定运行。基于此保证在火灾发生时,能够准确改变消防应急标志灯具的指示方向,点亮消防应急照明灯,帮助建筑内的人群选择逃生疏散路线,指引安.全的逃生方向,保障群众的人身安.全,为各类用户担心的安.全问题解决了后顾之忧。
3.2费用估算
集中电源型和自带电源型两种供电方式的费用估算如表3 所示。自带电源型灯具比集中电源型灯具价.格稍高,但应急照明配电箱价.格比集中电源低,因此可以发现两种供电方式下各长度区间工程造价相差不大。目前,大部分线路主要采用集中电源型灯具,只有少部分线路采用自带蓄电池型灯具。另外,《消防应急照明和疏散指示系统技术标准》(GB 51309-2018)**标准编制组相关答疑中也建议隧.道区间宜采用集中电源型灯具。
4. 一般工作照明的设置
4.1设置方案
在《消防应急照明和疏散指示系统技术标准》(GB51309-2018)实施之前,地铁区间照明配电设计采用的电压等级为AC220V,包括一般照明和应急照明;区间每隔100~200m设置一处一般照明配电箱和应急照明配电箱,一般照明灯具和应急照明灯具交替布置。应急照明兼用一般照明,以满足5lx的照度要求;火灾工况下,关闭一般照明,只保留应急照明。
随着《消防应急照明和疏散指示系统技术标准》(GB 51309-2018)的实施,目前各线路地下区间疏散照明均采用集中控制型消防应急照明和疏散指示系统,但对于一般工作照明的设置不同线路有着不同方案,主要分为两种。(1)一般照明采用电压等级为AC220V,正常工况下,一般照明灯具被点亮,疏散照明灯处于非持续模式,保持熄灭状态;火灾工况下,一般照明被切除,疏散照明灯应急点亮。(2)利用DC36V疏散照明兼做一般照明,且须处于持续模式,正常工况下可以根据照度要求处于节电点亮模式。
4.2方案对比
当疏散照明灯选用10W灯具、间隔10m布置时,可以满足平均照度5lx和低照度3lx的要求。在方案一中,由于疏散照明灯平时处于熄灭状态,一般照明为了满足平均照度5lx的要求需要额外增加灯具。如果一般照明同样选用10W灯具、间隔10m布置,则区间隧.道内照明灯具实际上是间隔5m一盏,即方案一实际上是在方案二的基础上额外增加1套一般照明系统,造价相对于方案二更高,而且区间隧.道内存在两种不同电压等级和制式的灯具,施工和维护相对复杂;但方案一严格区分了一般照明和疏散照明。
《消防应急照明和疏散指示系统技术标准》(GB51309-2018)并未明确限.制消防应急照明不能兼做一般照明,其**标准编制组相关答疑中认为,消防应急照明灯能否兼做一般工作照明主要取决于选用的照明灯具在符合回路功率和压降指标的前提下、经过合理设计布置能否满足一般工作照明的照度要求。
5.安科瑞消防应急照明和疏散指示系统选型方案
5.1系统概述
防应急照明和疏散指示系统主要由应急照明控.制.器、消防应急照明集中电源或应急照明配电箱、消防应急灯具等几部分组成。该套系统为安科瑞公司完全自主研发,符合**现行的行业规范,可以满足与AcrelEMS企业微电网.管理云平台或火灾自动报.警系统等进行数据交换和共享。
该系统配合火灾报.警.控.制.器使用时,在平时对系统内的设备进行实时的监视和控制,便于日常的管理和维护,保障系统的稳定运行。基于此保证在火灾发生时,能够准确改变消防应急标志灯具的指示方向,点亮消防应急照明灯,帮助建筑内的人群选择逃生疏散路线,指引安.全的逃生方向,保障群众的人身安.全,为各类用户担心的安.全问题解决了后顾之忧。
5.2应用场所
适用于住宅、酒店、办公楼、商城综合体、**、隧.道管廊、轨道交通、地库、仓库、工厂等各行业的消防应急照明和疏散指示系统。
5.3系统结构
5.4系统功能
5.4.1系统运行主界面
包含工具栏、平面展示、图层列表、状态栏,可以直观的查看监控设备的运行状态,并根据状态栏的现实内容直接切换至故障具体.位置。
5.4.2灯具配置界面
可以查看所有灯具状态与数量。
5.4.3信息界面
可查看历史操作、故障、事件信息、可按日期进行查询。
5.4.4权限管理界面
主要由应急启动、应急停止与手动火警组成,应急启动与停止用来测试设备应急功能是否正常,手动火警测试再具体着火点下系统的启动情况。
5.5系统硬件配置
5.5.1应急照明控.制.器选型
5.5.2 应急照明集中电源
5.5.3 防爆应急照明集中电源
5.5.4 A型集中电源集中控制灯具选型
6 结语
文章主要针对地铁区间隧.道消防应急照明集中电源设置方案、蓄电池电源供电方式和一般照明设置问题等方面展开探讨。
(1)集中电源装置设置在车站利于运维管理且蓄电池运行条件较好,但这种方案的造价比设置在区间联络通道更高,且区间隧.道越长差价越大。
(2)集中电源型和自带电源型两种供电方式在工程造价方面差别不大,但自带电源型方案后期的灯具维护工作量较大。
(3)消防应急照明灯兼做一般工作照明可以节省工程造价,发挥应急照明灯的功能。
参考文献
[1] 吴继珍, 赵霖.城市轨道交通区间隧.道消防应急照明设计研究[J].光源与照明, 2022, 4 (4) : 25-28
[2] 中华人.民共和国住房和城乡建.设.部. 消防应急照明和疏散指示系统技术标准: GB 51309—2018[S]. 北京: 中国计划出版社, 2019.
[3] 刘丽萍, 赵美君. 地铁车站设计如何合理执行新规范:《 消防应急照明及疏散指示系统技术标准》的探讨[J]. 智能建筑电气技术,2019, 13 (6) : 104-109.
[4] 李昕, 崔洪敏. 地铁区间应急照明设计方案探讨[J]. 建筑电气, 2021,40 (2) : 32-36.
[5] 胡忠魁, 王东萍. 地铁隧.道区间应急照明配电设计探讨[J]. 照明工程学报, 2021, 32 (6) : 109-115.
[6] 杜东平, 陈剗. 基于现行规范的地铁应急照明设计探讨[J]. 都市快轨交通, 2021, 34 (2) : 123-129.
[7] 住房和城乡建.设.部. 地铁设计防火标准: GB 51298—2018[S]. 北京: 中国计划出版社, 2018.
[8] 安科瑞企业微电网设计与应用手册2022.05版.
作者简介:
刘细凤,女,本科 安科瑞电气股份有限公司,主要研究方向为智能电网供配电Email: 2880157866@qq.com手机:18702111750QQ:2880157866/2881392119
公司简介:
安科瑞电子商务(上海)有限公司是安科瑞电气股份有限公司的全资子公司,安科瑞电气股份有限公司[股票代码:300286.SZ]是一家集研发、生产、销售和服务于一体的高新技术企业,致力于为用户端提供能效管理和用电安.全的系统解决方案。公司能效管理系统包括变电所运维云平台、安.全用电管理云平台、分表计电、环保用电监管云平台、预付费管理(系统)云平台、泛在电力物联网云平台、智能变配电监控系统、电能质量治理系统、建筑能耗管理系统、工业企业能源管控平台、电气火灾监控系统、消防设备电源监控系统、防火门监控系统、消防应急照明和疏散指示系统、充电桩收费管理云平台、数据中.心动环监控系统、电能管理系统、无线测温系统、智慧管廊综合监控和报.警系统、智能照明控.制系统、IT配电绝缘监测等系统及相关产品。目前已有8000多套各类系统解决方案在全国各地运行,帮助用户实现能源的可视化管理,提供能源数据服务,为用户高.效和安.全用能保驾护航。
上一篇
下一篇